
Comparison between different Gaussian series representations of the imaginary time propagator

Riccardo Conte* and Eli Pollak†

Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovoth, Israel
�Received 20 December 2009; revised manuscript received 27 January 2010; published 18 March 2010�

A useful approximation for the thermal operator exp�−�Ĥ� is based on its representation in terms of either
frozen or thawed Gaussian states. Such approximate representations are leading-order terms in respective series
representations of the thermal operator. A numerical study of the convergence properties of the frozen Gaussian
series representation has been recently published. In this paper, we extend the previous study to include also
the convergence properties of the more expensive thawed Gaussian series representation of the thermal opera-
tor. We consider three different formulations for the series representation and apply them to a quartic double-
well potential to find that the thawed Gaussian series representation converges faster than the frozen Gaussian
one. Further analysis is presented as to the convergence properties and the numerical efficiency of three
different thawed Gaussian series representation. The unsymmetrized form converges most rapidly, however,
the lower order approximations of the symmetrized forms are more accurate. Comparison with a standard
discretized path-integral evaluation demonstrates that the Gaussian based perturbation series representation
converges much faster.
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I. INTRODUCTION

The imaginary time propagator exp�−�Ĥ�, where Ĥ is the
Hamiltonian operator, lies at the heart of quantum thermody-
namics. Many methods have been devised for its numerical
computation in complex systems. Perhaps the most straight-
forward way is via path-integral Monte Carlo �PIMC� �1–3�
which has been successfully applied to systems of hundreds
of degrees of freedom. PIMC is though difficult to converge
at low temperatures. It thus remains of interest to propose
and study alternative and approximate methodologies. These
include for example the use of effective variational potentials
�4–7� or initial value representations �IVRs� which are based
on Gaussian �coherent-state� wave packets.

The quantum-mechanical imaginary-time propagation of
a wave function is governed by the Bloch equation:

−
�

��
�q0,�� = Ĥ�q0,�� , �1.1�

where � is the “imaginary time.” �We will use Greek letters
throughout to denote imaginary times.� The solution to Eq.
�1.1� can be approximated by means of a Gaussian wave
packet whose center �in configuration space� evolves in time,
also known as a frozen Gaussian wave packet �8�. In addition
one may allow the width to evolve in time and then one is
considering a thawed Gaussian wave packet �9� whose ge-
neric coordinate representation is

�x�G,q,�� = exp�−
1

2
�x − q����TG−1����x − q���� + ����	 .

�1.2�

Here, G��� is a time-dependent width matrix with positive
eigenvalues, the Gaussian center is q���, and ���� is a scale

factor. Based on earlier work of Hellsing et al. �10�, the
thawed Gaussian approximation has been used extensively in
recent years in a symmetrized form by Mandelshtam and
Frantsuzov and co-workers �11–15�, especially in the context
of the thermodynamics of rare-gas clusters. However, Gauss-
ian wave packets are not without problems, especially at low
temperatures. Liu and Miller �16� noted that an approxima-
tion based only on Gaussian wave packets, whether frozen or
thawed, cannot account for the correct structure of the Bolt-
zmann operator in the low-temperature tunneling regime
where typically the coordinate representation of the propaga-
tor has a double saddle-point structure. Therefore the Gauss-
ian approximation for example cannot be used within the
context of the quantum instanton approximation for reaction
rates �17�.

These deficiencies can be remedied at least in principle. In
Ref. �18� it was pointed out that one can use the thawed
Gaussian approximation in the context of a generalized time-
dependent perturbation theory �19–21� to construct a series
representation of the imaginary time propagator whose
zeroth-order term is the symmetrized thawed Gaussian ap-
proximation.

Such a series representation was then implemented by
Zhang et al. �22� employing the frozen Gaussian symme-
trized approximation as the leading-order term in the series.
The frozen Gaussian has the advantage that the time evolu-
tion, which is based on a modified dynamics, occurs only in
configuration space. One must then solve N coupled equa-
tions of motion when considering a system with N degrees of
freedom. In the thawed Gaussian form, the time dependence
of the width matrix introduces an additional N2 coupled
equations of motion.

The purpose of this paper is to study the series represen-
tation of the imaginary time propagator, based on the thawed
Gaussian zeroth-order solution. We also derive a new algo-
rithm for the construction of the generalized time-dependent
perturbation series. We then study three different ways to
implement the series and compare the convergence proper-

*riccardo.conte@weizmann.ac.il
†eli.pollak@weizmann.ac.il

PHYSICAL REVIEW E 81, 036704 �2010�

1539-3755/2010/81�3�/036704�8� ©2010 The American Physical Society036704-1

http://dx.doi.org/10.1103/PhysRevE.81.036704


ties with those found when using the frozen Gaussian based
series representation. We also present a comparison between
the convergence of the Gaussian series based representation
and a discretized path-integral evaluation.

The generalized perturbation theory and its three variants
for the thawed Gaussian representation are presented in Sec.
II. Numerical examples, the comparison with the frozen
Gaussian and standard path-integral estimates are provided
in Sec. III. We find that the thawed Gaussian series represen-
tations converge more rapidly than the frozen Gaussian and
that the Gaussian series representation is much more efficient
than the standard path-integral estimate especially at low
temperature. We end with a Discussion of the relative effi-
cacy of using the different methods at low temperature.

II. SERIES REPRESENTATIONS FOR
THAWED GAUSSIANS

The basic thawed Gaussian approximation K̂0��� for the

exact imaginary time propagator K̂���=exp�−Ĥ��, which we

will refer to as the time-evolved Gaussian approximation
�TEGA I� is

�x�K̂0����q0� = 
 1

2�
�N/2 1

det�G����1/2exp�−
1

2
�x − q����T

�G���−1�x − q���� + ����	 . �2.1�

The time dependence of the Gaussian center, Gaussian width
matrix and scale factor is determined by the following evo-
lution equations �10–12�:

d

d�
q��� = − G�����V�q����� , �2.2�

d

d�
G��� = − G������TV�q�����G��� + �2I , �2.3�

d

d�
���� = −

1

4
Tr����TV�q�����G���� − �V�q����� .

�2.4�

The boundary conditions for each of these equations are

q�� � 0� = q0, G�� � 0� = �2�I, ��� � 0� = − �V�q0� .

�2.5�

The brackets in Eqs. �2.2�–�2.4� denote the Gaussian aver-
age:

TABLE I. Number of configuration integrations I�n� needed for
the nth order in the thawed Gaussian series representation. Starting
from fourth order, I�n� of TEGA III is less than that of TEGA II.

n TEGA I TEGA II TEGA III

0 0 1 1

1 1 2 3

2 2 4 4

3 3 5 5

4 4 7 6
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FIG. 1. �Color online� Convergence of different Gaussian series for the antisymmetric matrix element of the thermal operator at high
temperature ��=0.1�. The crosses represent the exact quantum-mechanical solution obtained by direct diagonalization of the Hamiltonian.
The optimized frozen Gaussian results are given in the top left panel; TEGA I, II, and III follow clockwise.
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�f�q�� = 
 1

�
�N/2 1

det�G����1/2 dx

�exp�− �x − q����TG���−1�x − q�����f�x� .

�2.6�

We note that for the thawed Gaussian methodology the initial
value of the width matrix is dictated by the condition that
initially ��=0� the approximate propagator reduces to the
identity operator. This differs from the frozen Gaussian ap-
proximation, where one has freedom in choosing the value of
the constant width parameter. It was shown in Ref. �22� that
the accuracy of the frozen Gaussian approximation depends
sensitively on the choice of the width parameter. One opti-
mizes it by minimizing the first-order correction to the par-
tition function, relative to the zeroth-order term.

The propagator K̂0 is an approximation to the exact propa-

gator K̂. One can then associate with it a “correction opera-
tor” which provides a measure of how far the approximate
operator is from the exact one. It is defined as

Ĉ��� = 
−
�

��
− Ĥ�K̂0��� . �2.7�

The formal solution of this equation is readily found to be

K̂0��� = K̂��� − 
0

�

d�1K̂�� − �1�Ĉ��1� . �2.8�

One may then expand the exact propagator as a power series
in the correction operator:

K̂��� = �
j=0

�

K̂j��� , �2.9�

where we assume that K̂j � Ĉj. Inserting this into the formal
solution given in Eq. �2.8� leads to the recursion relation:

K̂j+1��� = 
0

�

d��K̂j�� − ���Ĉ����, j 	 0. �2.10�

The expression for the correction operator has been worked
out in Ref. �18�, one finds

�x�Ĉ����q0� = − �V1�x,q,����x�K̂0����q0� , �2.11�

where the “potential nonlinearity term” �V1�x ,q ,��� contains
all the derivatives of the potential which are higher than sec-
ond order. Equations �2.1�–�2.11� represent a first practical
generalized perturbation theory route for calculation of the
exact quantum thermal operator.

A second way �TEGA II� of calculating the thermal
operator stems from the fact that it is Hermitian:

�x�K̂����x�� = �x�K̂��/2�K̂†��/2��x��

= dy�x�K̂��/2��y��y�K̂†��/2��x�� . �2.12�

By insertion of Eq. �2.9� into Eq. �2.12�, one readily finds
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FIG. 2. �Color online� Convergence of different Gaussian series for the antisymmetric matrix element of the thermal operator around the
crossover temperature ��=0.3�. The notation is as in Fig. 1.
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�x�K̂����x�� = �
i,j=0

�  dy�x�K̂i��/2��y��y�K̂j
†��/2��x�� .

�2.13�

Assuring this symmetry already for the zeroth-order term
was one of the important contributions of the methodology
used in Refs. �11,12�. This leading-order term

�x�K̂0
s����x�� = dq
 1

2�
�Nexp�2���/2��

det�G��/2��

� exp�−
1

2
�x − q��/2��TG��/2�−1

��x − q��/2��	
� exp�−

1

2
�x� − q��/2��TG��/2�−1

��x� − q��/2��	 , �2.14�

like the exact propagator is symmetric. It requires to evolve
the dynamics �Eqs. �2.2�–�2.4�� only up to � /2 at the cost of
an additional integration over the configuration space, as
compared with TEGA I. This then implies that higher-order
terms are much more “expensive.” Consider for example the

first-order correction, it involves the multiplication of three
propagators and thus two coordinate integrations. TEGA I
involves a product of only two operators and thus one coor-
dinate integration. On the other hand, due to the symmetry
which is included term by term, one might expect that this
second approach will converge faster than the first approach.
The price to pay is the additional integration, and the increas-
ing number of terms that contribute to each order in the
perturbation series. This makes it computationally more ex-
pensive especially for high-dimensional systems.

A third series representation �TEGA III� is obtained by
application of Eq. �2.7� directly to Eq. �2.14�. The correction
operator is then

�x�Ĉ0
s����x�� = dq
V�x,x�,q;�/2�
 1

2�
�Nexp�2���/2��

det�G��/2��

� exp�−
1

2
�x − q��/2��T

�G��/2�−1�x − q��/2��	
� exp�−

1

2
�x� − q��/2��TG��/2�−1

��x� − q��/2��	 , �2.15�

where the potential nonlinearity term is
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FIG. 3. �Color online� Convergence of different Gaussian series for the diagonal matrix element of the thermal operator at low
temperature ��=1.0�. The notation is as in Fig. 1.
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V�x,x�,q;�/2� = −
d���/2�

d�
+

d ln�det G��/2��
d�

−
1

4

dqT��/2�
d�

G��/2�−1��x − q��/2��

+ �x� − q��/2��� −
1

4
��x − q��/2��T

+ �x� − q��/2��T�G��/2�−1dq��/2�
d�

+
1

2
�x − q��/2��T d

d�
G��/2�−1�x − q��/2��

+
1

2
�x� − q��/2��T d

d�
G��/2�−1�x� − q��/2��

+
�2

2
�x − q��/2��TG��/2�−1G��/2�−1

��x − q��/2�� −
�2

2
Tr�G��/2�−1� − V�x� .

�2.16�

TEGA III may be considered as a compromise route between
TEGA I and TEGA II. It retains the symmetry of the zeroth-
order term, however, just as in TEGA I, successive terms in
the perturbation series are not symmetric. Since the zeroth-
order term involves a coordinate integration, one finds that
the first-order term needs three coordinate integrations, one
more than TEGA II. However, the number of terms that con-
tribute to each order is less, and stepping up to the next order
requires only one additional integration for TEGA III so that

for the fourth-order correction and higher it becomes less
expensive than TEGA II.

More generally, for the nth-order propagator, the number
of configuration integrations needed by the different ap-
proaches is given by the function

I�n� =�
n TEGA I

3n

2
+ 1 if n even

TEGA II

3n

2
+

1

2
if n odd

1 if n = 0

TEGA III.

n + 2 if n � 0

� �2.17�

Table I presents the values of I�n� up to fourth order.

III. APPLICATION TO A QUARTIC DOUBLE-WELL
POTENTIAL

We apply the three methods to the case of a quartic
double-well potential

V�x� = −
�2

2
x2
1 −

x2

2x0
2� +

�2x0
2

4
�2.18�

employing the parameter values used in Ref. �22�: �=1; �
=16 �the frequency of the barrier�; the minima of the poten-
tial are at the anharmonicity length x0=1.

The Gaussian averaged potential is
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FIG. 4. �Color online� Convergence of different Gaussian series for the antisymmetric matrix element of the thermal operator at low
temperature ��=1.0�. The notation is as in Fig. 1.
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�V�q�� = V�q� +
3G�2q2

4x0
2 −

�2G

4
+

3G2�2

16x0
2 �2.19�

so that ��V�q�� and ���TV�q�� are readily found by deriva-
tion.

Calculations were performed by means of grid represen-
tations for the zeroth-order propagators and the correspond-
ing correction operators. Higher-order terms in the series
were obtained by matrix multiplication and numerical time
integration. Results are presented for diagonal �x�exp

�−�Ĥ��x� and antisymmetric �x�exp�−�Ĥ��−x� matrix ele-
ments as a function of the coordinate, employing the three
different TEGA methods and comparing them with the fro-
zen Gaussian based results of Ref. �22�. The diagonal ele-
ment is related to the classical localization of the wave func-
tion in the region of the wells, while the antisymmetric
element depends sensitively on tunneling through the barrier.
One thus expects the perturbation series to converge much
faster for the diagonal element. The crossover temperature,
defined as ���=2�, separates between the activation and
tunneling regimes �23�.

In Fig. 1 we present results for temperatures ����=1.6�
significantly above the crossover temperature. The zeroth-
order diagonal element is almost perfect for all four methods
under study and so there is no need to plot it. Differences do
show up even at this high temperature when considering the

antisymmetric matrix element. As may be seen from the fig-
ure, the zeroth-order term in the perturbation series is already
accurate for the TEGA II and TEGA III methods �the
leading-order term for these two methods is the same�. The
optimized frozen Gaussian result is slightly worse than
TEGA II while TEGA I seemingly gives the worst result.
However, one should note that the numerical effort of first-
order TEGA I is comparable to the numerical effort needed
for zeroth-order TEGA II since the former and the latter need
one coordinate integration only �see Table I�.

Results for a temperature ����=4.8� which is only
slightly above the crossover temperature are shown in Fig. 2.
Also at this temperature, the leading diagonal term in the
series is accurate for all four methods under consideration.
We therefore provide results only for the antisymmetric ma-
trix element. Here the differences between the various meth-
ods are larger. It is evident that the frozen Gaussian is the
worst, one needs to go to fourth order in the perturbation
series to converge to the exact result. TEGA III does best, it
is essentially converged already with second-order perturba-
tion theory, while TEGA I and TEGA II are of comparable
accuracy, one must go to third order to converge to the nu-
merically exact answer. Here too though one must consider
the number of coordinate integrations needed to converge.
As seen from Table I third-order TEGA I implies altogether
six configuration integrations and six time integrations.
Second-order TEGA III involves eight configuration integra-
tions and three time integrations while third-order TEGA II
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FIG. 5. �Color online� Convergence of different Gaussian series for the antisymmetric matrix element of the thermal operator at moderate
temperature ��=0.3� but with a well that supports approximately 12 bound states �x0=2�. The notation is as in Fig. 1.
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involves 12 coordinate integrations and six time integrations.
It would thus seem that in this case, the unsymmetrized se-
ries given by TEGA I is the most efficient.

The deep tunneling regime ����=16� is studied in Figs.
3 and 4. Even at this low temperature, all methods do rather
well for the diagonal matrix element as shown in Fig. 3. One
may group the methods into pairs. TEGA III and the frozen
Gaussian method need second-order perturbation theory to
converge while TEGA I and TEGA II converge already with
first order. Again though, the numerical effort involved in
TEGA I is smaller than that of TEGA II. More noticeable
differences emerge when considering the antisymmetric ma-
trix element, as shown in Fig. 4. The frozen Gaussian
method converges only at the fifth order while all TEGA
methods converge already at the third order. Clearly, the
thawed Gaussian methods are more accurate as one goes
deeper into the tunneling regime. Again, the TEGA I method
is the “cheapest” relative to TEGA II and III. Although all
three methods must go to third order, the number of configu-
ration integrations needed for TEGA I �6� is significantly
smaller than the number needed for TEGA II �12� or TEGA
III �13�. We do note though that the zeroth and first-order
results of TEGA I are qualitatively wrong. The differences
between TEGA II and TEGA III are small, both converge to
the exact answer by the third order, and in both cases the
second-order result is already rather good.

We also studied the tunneling matrix element for a quartic
double-well potential with a larger barrier, using x0=2. The
results for the antisymmetric matrix element and for tem-
perature ���=4.8 are shown in Fig. 5. These results were
obtained by using quartic precision arithmetic, needed for the
very small magnitude of the matrix elements. As in the pre-

vious cases, the thawed Gaussian series converges much
more rapidly than the frozen Gaussian. TEGA I is the cheap-
est to use, however, the first terms are qualitatively wrong
while those of TEGA III are reasonable. Given the similarity
between TEGA II and TEGA III we do not provide the
TEGA II results in this figure.

Thus far we have only considered the convergence of dif-
ferent Gaussian based series representations of the matrix
elements of the Boltzmann operator. It is of interest to check
whether the usage of such a series representation is at all
competitive with the more standard path-integral techniques.
For this purpose we computed also the antidiagonal matrix
elements using the discretized path-integral formula

�x�exp�− �Ĥ��− x� = 
−�

�

�
j=1

N

dxj�x�exp
−
�Ĥ

N + 1
�

��x1� · �x1�exp
−
�Ĥ

N + 1
�

��x2� ¯ �xN�exp
−
�Ĥ

N + 1
��− x� ,

�2.20�

where the matrix elements �x1�exp�− �Ĥ
N+1 ��x2�, etc. were esti-

mated using the TEGA I approximation Eq. �2.1� which is
exact when the imaginary time is sufficiently small.

The results are shown in Fig. 6 for the antisymmetric
matrix element, with x0=1 and moderate ��=0.3� and low
��=1� temperature. One finds that in both cases, the number
of time slices needed for the path-integral estimate is much
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FIG. 6. �Color online� Convergence of a discretized path-integral representation for the antisymmetric matrix element of the thermal
operator at moderate �top panel, �=0.3� and low �bottom panel, �=1� temperature with a well that supports approximately 6 bound states
�x0=1�. The numerically exact results are denoted by the crosses. Nint represents the number of time slices used.
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larger than the number of integrations needed to converge
when using any of the three TEGA series representations.
This implies that the Gaussian based series representation
could provide a much cheaper route to numerical evaluation
of the Boltzmann operator.

IV. DISCUSSION

We have analyzed the convergence properties of three dif-
ferent thawed Gaussian series representations for the imagi-
nary time propagator. TEGA I used the simplest Gaussian
approximation, without symmetrization. TEGA II and TEGA
III used a symmetrized Gaussian approximation for the
zeroth-order term. The perturbation series is symmetrized
term by term when using TEGA II, but it is not symmetrized
when using TEGA III. When considering only the partition
function, we find that the frozen Gaussian approximation is
as accurate as the thawed Gaussian. Since it is cheaper to
implement, it is the preferred route. However, when consid-
ering quantities which are sensitive to tunneling, we find that
�a� the thawed Gaussian approximations are more accurate
and the respective series converges to the numerically exact
answer with significantly less iterations. �b� Within the
thawed Gaussian class of approximations, the fully unsym-
metrized form converges to the numerically exact answer
with fewer configuration integrations than TEGA II and
TEGA III. This implies that when one needs accurate an-
swers, one should employ the unsymmetrized series repre-
sentation. However, if one only needs a qualitative estimate,
then the symmetrized form is more reliable. Finally, we find
that the unsymmetrized series representation, based on the
symmetrized form, is more efficient for use than the fully
symmetrized series representation.

When comparing the thawed Gaussian forms with the fro-
zen Gaussian, one should keep in mind that we compared
with the optimized frozen Gaussian form. That is, the frozen

Gaussian approximation depends sensitively on the initial
choice of the width matrix. The optimal choice was found in
Ref. �22� by minimizing the first-order correction to the par-
tition function. It was this choice which then served as the
basis for comparison with the thawed Gaussian in the present
study. In contrast, the thawed Gaussian does not have this
additional freedom; as the initial choice of the width matrix
is determined by the condition that initially, the propagator
reduces to the identity operator. This is an additional compu-
tational advantage of the thawed Gaussian approach. Con-
versely, the thawed Gaussian approach calls for the solution
of N2 coupled equations of motion for the width matrix.
However, in systems with many degrees of freedom, it is the
size of the Monte Carlo sample needed for convergence
which is the typical bottleneck rather than the number of
equations which need to be solved. It may therefore be that
for “large” systems, the thawed Gaussian is the preferred
route due to the smaller number of configuration integrations
needed to converge the series.

It is remarkable that with the thawed Gaussians, less than
five iterations are needed to converge matrix elements which
are of the order of 10−26. This was achieved only by using
quartic precision arithmetic. This rapid convergence suggests
that this methodology can be very useful even for systems
with many degrees of freedom. This conclusion is especially
strengthened when comparing to the slow convergence we
found for the antisymmetric matrix element based on a dis-
cretized path-integral representation. The Gaussian series
based representation demands much less coordinate integra-
tions then the discretized path integral, especially at low
temperatures.
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